
Introduction MPCC

Complementarity Formulations

Complementary Variables

Are variables that satisfy

s ≥ 0, x ≥ 0, sT x = 0 ↔ 0 ≤ s ⊥ x ≥ 0

Their most common occurence is perhaps in the optimality
conditions of problems with bound constraints

minx≥0F (x) ⇒ ∇xF (x)− s = 0, 0 ≤ s ⊥ x ≥ 0

But their modeling power exceeds optimization since they can
quantify alternatives.
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Complementarity Formulations

(Linear) Complementary Problems, (LCP)

s = Mx + q(F (x)), s ≥ 0, x ≥ 0, sT x = 0.

• Examples: Linear and Quadratic Programming.

• Important classes of matrices: PSD (xTMx ≥ 0, ∀x) and
copositive (xTMx ≥ 0, ∀x ≥ 0).

• LCP’s involving copositive matrices do not have a solution in
general.

• Let M be copositive. If, x ≥ 0 and xTMx = 0 implies
qT x ≥ 0, then the LCP has a solution that can be found by
Lemke’s algorithm.
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Complementarity Formulations

(Parameterized) Variational Inequalities ((P)VI)

Problem: Let F : Rn+m → Rm, F ∈ C2, and K ⊂ Rm be a convex
set. Find y ∈ Rm such that

〈F (x , y), v − y〉 ≥ 0, ∀v ∈ K.

x are the design variables, y are the state variables. Solution set
of the variational inequality: S(x).
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Complementarity Formulations

Complementarity Constraint Formulation of Variational
Inequality

Any Parameterized Variational Inequality (PVI) can be represented
as a problem with complementarity constraints. If
K = {v ∈ Rm| v ≥ b}, for some vector b ∈ Rm, the parameterized
variational inequality can be represented as

F (x , y) ≥ 0,
y ≥ b,

(y − b)TF (x , y) = 0.

Mihai Anitescu Argonne National Laboratory

Complementarity Problems and Complementarity Constraint



Introduction MPCC

Complementarity Formulations

Complementarity Constraint Formulation of PVI

Any Parameterized Variational Inequality (PVI) can be represented
as a problem with complementarity constraints. If
K = {v ∈ Rm| v ≥ b}, for some vector b ∈ Rm, the parameterized
variational inequality can be represented as

F (x , y) ≥ 0,
y ≥ b,

(y − b)TF (x , y) = 0.
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Complementarity Formulations

Optimal Design of PVI

Design parameters x are required to be in set F .

Variational Formulation Complementarity Formulation

minx ,u f̃ (x , u)
subject to x ∈ F

u ∈ S(x)

minx ,u f̃ (x , u)
subject to hi (x) = 0, i = 1, 2, . . . , nh

gj(x) ≤ 0, j = 1, 2, . . . , ng

F (x , y) ≥ 0,
y − b ≥ 0,

(y − b)T F (x , y) = 0.

For the obstacle problem, we have that ∇yF (x , y) is positive
definite for any value of x .
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Complementarity Formulations

Mathematical Problems with Complementary Constraints
(MPCC)

minimizex ,y f (x , y)
subject to g(x , y) ≥ 0

h(x , y) = 0
F (x , y) = s
y ≥ 0
s ≥ 0

Compl. constr. sT y = 0

The functions f , F and h are smooth.
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Examples

Example problems

• Contact problems (Robotics, Virtual reality, Structural
engineering).

• Game theoretical based models (Economics, Energy Markets).

• Finance (Black Sholes, American Option).

• Bilevel Optimization, where the lower-level problem has
inequality constraints (Economics, Energy Markets, Process
Engineering).

• ...
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Examples

Contact Problems, Formulation and Design

Discretization of elastic membrane with rigid obstacle, defined by
the mapping χ : Ω(x) → R, Ω(x) ⊂ R2. x are the design
parameters. Define

K =
{

v ∈ H1
0 (Ω(x))

∣∣ v ≥ χ a.e. in Ω(x)
}

F (x , u) = −∆u − f

where f is the force perpendicular to the membrane applied to
each point (e.g. gravity).
Problem Find the shape of the membrane u ∈ K subject to the
rigid obstacle constraint:

〈F (x , u), v − u〉 ≥ 0, ∀v ∈ K.

Most free boundary problems can be expressed like PVI!
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Examples

Nash Games

ISO
game
Nash producers

Nash Game: non-cooperative equilibrium of several producers

z∗i ∈

{
argmin

zi

bi (ẑ)

subject to ci (zi ) ≥ 0
producer i

• ẑ = (z∗1 , . . . , z∗i−1, zi , z
∗
i+1, . . . , z

∗
l )

• All producers/players are equal
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Examples

Complementarity Formulation

Introduce slacks s, and form optimality condtions ...

∇b(z)−∇c(z)λ = 0
s − c(z) = 0

0 ≤ λ ⊥ s ≥ 0

where

• b(z) = (b1(z), . . . , bk(z)) & c(z) = (c1(z), . . . , ck(z))

• ⊥ means λT s = 0, either λi > 0 or si > 0
y = (z , λ, s)
h = . . .

}
... becomes ...

{
h(y) = 0
0 ≤ y1 ⊥ y2 ≥ 0

• Nonlinear complementarity problem (NCP)

• Robust large scale solvers exist: PATH
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Examples

Stackelberg Games

Single dominant producer & Nash followers


minx≥0,y f (x , y)

h(x , y) = 0
0 ≤ y1 ⊥ y2 ≥ 0

ISO
game
Nash producers

LARGE
producer # 1

• Nash game (h(x , y) = 0) parameterized in leader’s variables x

• Mathematical Program with Complementarity
Constraints (MPCC)

• For the Penn-NJ-Mar NOx allowance market MPCC with
20,000 vars and 10,000 cons!
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State of the art

Complexity Issues

• LCP with PSD matrices can be solved in polynomial time.

• General LCP problems have currently known worst-case
exponential complexity.

• Nonlinear CP are harder than linear CP (iterative LCP).

• MPCC are harder than Nonlinear CP (iterative LCP).

• Differential Problems with Complementarity Constraints may
be even harder, but their discretization leads to one of the
problems above. Nonetheless, they pose serious convergence
difficulties (as the time step or mesh size go to zero), but we
will not address those today.
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State of the art

“Hottest” algorithms

• Lemke’s algorithm: simplex-like pivotal algorithm, excellent
robustness, complexity may increase quickly. Implemented in
PATH.

• Interior point algorithms, where the regularization parameter ε
is decreased driven down to 0 after a few inner iterations

s = Mx + q, s ≥ 0, x ≥ 0, sT x = 0 ⇒ s = Mx + q, sx = ε

Works for PSD matrices only

• Semismooth approaches : rephrase the complementarity
constraints with a semismooth function (such as
Fischer-Burmeister) and use semismooth Newton method.
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State of the art

Nonsmooth approach for MPCC

• Applies to the variational approach. If the variational
inequality is regular, then S(x) contains only one point and
defines a continuous mapping y(x).

• However, y(x) is nondifferentiable, due to the change of the
active set with x .

• Need to use generalized gradients in a bundle trust-region
method to solve

min f (x , y(x))
subject to x ∈ F

• Problem: May need a number of computations that
grows exponentially in the number of degenerate pairs

• Software for large-scale problems is inexistent
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State of the art

Nonlinear Programming Approach for MPCC

Solve the complementarity formulation by a nonlinear programming
approach. Problem: The feasible set has no relative interior
(later), therefore neither will its linearization, because of the
complementarity constraints: No constraint qualification.

x ≤ 0, y ≤ 0, xy = 0 ⇒ x , y cannot both be negative

Major problem for most algorithms based whether based on
linearization (Sequential Quadratic Programming) or not.
Need algorithms that accomodate this type of degeneracy,
since all classical algorithms assume that a constraint
qualification holds.
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Nonlinear Programming Review

Nonlinear Program (NLP)

For f , g , h ∈ C2(Rn)

minimizex∈Rn f (x)

subject to hi (x) = 0 i = 1, ..., r

gj(x) ≤ 0 j = 1, ...,m

Inequality Constraints Only

minimizex∈Rn f (x)

subject to gj(x) ≤ 0 j = 1, ...,m

Any results can be extended for equality constraints as long as
∇xhi (x), i = 1, . . . , r are linearly independent.
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Nonlinear Programming Review

“Steepest Descent” for Nonlinearly Constrained
Optimization

SQP: Sequential Quadratic Programming.

1 Set k = 0, choose x0.

2 Compute dk from

minimize ∇f (xk)Td + 1
2dTd

gj(x
k) +∇gj(x

k)Td ≤ 0, j = 1, . . . ,m.

3 Choose αk using Armijo for the nondifferentiable merit
function φ(x) = f (x) + cφ max{g0(x), g1(x), ...gm(x), 0},
cφ > 0, and set x (k+1) = xk + αkdk .

4 Set k = k + 1 and return to Step 2.
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Nonlinear Programming Review

Optimality Conditions

Assume f (x) is twice differentiable. Problem:

minimizex∈Rn f (x)

First-order necessary conditions: (nonlinear equations)

∇x f (x) = 0

Second-order necessary conditions

∇2
xx f (x) � 0

Second-order sufficient conditions (Newton iteration): FOC+

∇2
xx f (x) � 0
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Nonlinear Programming Review

Mangasarian-Fromovitz Constraint Qualification

• Mangasarian Fromovitz CQ (MFCQ): The tangent cone to
the feasible set T (x∗) has a nonempty interior at a solution x∗

or

∃p ∈ Rn ; such that ∇xgj(x
∗)Tp < 0, j ∈ A(x∗).

• MFCQ holds ⇔ The set M(x∗) of the multipliers satisfying
KKT is nonempty and bounded.

• The critical cone:

C = {u ∈ Rn |∇xgj(x
∗)Tu ≤ 0, j ∈ A(x∗), ∇x f (x∗)Tu ≤ 0}

• If MFCQ does not hold then
T (x , u) =

{
u ∈ Rn, | gj(x) +∇xgj(x)Tu ≤ 0, j = 1, . . . ,m

}
may be empty x arbitrarily close to x∗. Problem for SQP!
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Nonlinear Programming Review

Karush Kuhn Tucker (KKT) conditions

The active set at a feasible x ∈ Rn:

A(x) = {j |1 ≤ j ≤ m, gj(x) = 0}
Stationary point of NLP : A point x for which there exists λ ≥ 0
such that

∇x f (x) +
∑

j∈A(x)

λj∇xgj(x) = 0

The Lagrangian:
L(x , λ) = f (x) +

∑m
j=1 λjgj(x) = f (x) + λTg(x).

Complementarity formulation for stationary point:
∅ 6= M(x) ={
λ ∈ Rm |λ ≥ 0, ∇xL(x , λ) = 0, g(z) ≤ 0, (λ)Tg(z) = 0

}
KKT theorem: MFCQ ⇒ the solution x∗ of the NLP is a
stationary point of the NLP (multipliers exist).Mihai Anitescu Argonne National Laboratory
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Nonlinear Programming Review

Second-order optimality conditions (SOC)

Sufficient SOC: MFCQ and ∃σ̃ > 0 such that ∀u ∈ C(x∗)

max
λ∈M(x∗)

uTLxx(x
∗, λ)u = max

λ∈M(x∗)
uT∇2

xx(f +λTg)(x∗)u ≥ σ̃‖u‖2.

(
∃λ ∈M(x∗) uTLxx(x

∗, λ)u = uT∇2
xx(f + λTg)(x∗)u > σ̃‖u‖2

)
Sufficient SOC imply Quadratic Growth:

max {f (x)− f (x∗), g1(x), g2(x), . . . , gm(x)} ≥ σ‖x − x∗‖2 > 0

MFCQ + Quadratic Growth ⇒ x∗ is an isolated stationary
point and certain SQP algorithms will achieve at least local
linear convergence
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Nonlinear Programming Review

Lack of Constraint Qualification
Problem: The feasible set has no relative interior (later),
therefore neither will its linearization, because of the
complementarity constraints: No constraint qualification.

x ≤ 0, y ≤ 0, xy = 0 ⇒ x , y cannot both be negative
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Formulation

Formulation

minx f (x) subject to
g(x) ≥ 0, h(x) = 0,
0 ≤ GT x ⊥ HT x ≥ 0,

where

• G and H are n ×m column submatrices of the n × n identity
matrix (with no columns in common): lower bounds;

• f : Rn → R, g : Rn → Rp, and h : Rn → Rq are twice
continuously differentiable. Think GT x = x1(= y),
HT x = x2(= s)

Theory extends to nonlinear functions 0 ≤ G (x) ⊥ H(x) ≥ 0. We
use bounds because they can be enforced explicitly by algorithms
for the NLP subproblem; this leads to some nice properties.
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Formulation

Some Definitions
Stationarity for MPCC at a feasible point x∗: Define active sets:

Ig
∆
= {i ∈ {1, 2, . . . , p} | gi (x

∗) = 0},
IG

∆
= {i ∈ {1, 2, . . . ,m} |GT

i x∗ = 0},
IH

∆
= {i ∈ {1, 2, . . . ,m} |HT

i x∗ = 0},

Feasibility ⇒
IG ∪ IH = {1, 2, . . . ,m}

Multiplier tuple (λ, µ, τ, ν) defines MPCC Lagrangian :

L(x , λ, µ, τ, ν) = f (x)− λTg(x)− µTh(x)− τTGT x − νTHT x .

Constraint qualifications: MPCC-LICQ: K is linearly
independent set (ensures that (λ∗, µ∗, τ∗, ν∗) satisfying stationarity
is unique):

K ∆
= {∇gi (x

∗)}i∈Ig ∪ {∇hi (x
∗)}i=1,2,...,q ∪ {Gi}i∈IG ∪ {Hi}i∈IH .

Mihai Anitescu Argonne National Laboratory
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Formulation

Second-Order Conditions for MPCC

MPCC-SOSC: Let x∗ be strongly stationary. There is σ > 0 such
that for every s ∈ S∗, there are multipliers such that

sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s ≥ σ‖s‖2.

Mihai Anitescu Argonne National Laboratory
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Formulation

Stationary points satisfy ...

∇xL(x∗, λ∗, µ∗, τ∗, ν∗) = 0,

0 ≤ λ∗ ⊥ g(x∗) ≥ 0,

h(x∗) = 0,

τ∗ ⊥ GT x∗ ≥ 0,

ν∗ ⊥ HT x∗ ≥ 0,

...AND, from stronger to weaker concept, .
• Strong stationarity: τ∗i ≥ 0 ν∗i ≥ 0, i ∈ IG ∩ IH ,.
• M-stationarity: τ∗i ν∗i ≥ 0 but not both τ∗i , ν∗i negative, for

i ∈ IG ∩ IH .
• C-stationarity: τ∗i ν∗i ≥ 0 for i ∈ IG ∩ IH .

Strong stationarity: there is no direction that decreases f
but stays feasible to first order .Mihai Anitescu Argonne National Laboratory
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Formulation

Typical assumptions for MPCC analysis

• MPCC-LICQ

• MPCC-SOSC

• Both are generic at a solution.
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Elastic Mode

Idea explained on NLP reformulation: Assumptions

minx f (x) subject to gi (x) ≤ 0, i = 1, 2, . . . m.

• The Lagrange Multiplier set is not empty (but may be
unbounded).

• The quadratic growth condition holds

max {f (x)− f (x∗), g1(x), g2(x), . . . , gm(x)} ≥ σ‖x − x∗‖2

• f , g are twice continuously differentiable.

• Note that quadratic growth is the weakest possible
second-order condition!
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Elastic Mode

Idea explained on NLP reformulation: Elastic Mode
Reformulation

minx ,ζ f (x) + cζ subject to gi (x) ≤ ζ, i = 1, 2, . . . m, ζ ≥ 0.
For c > cζ at (x∗, 0) we have

• The Lagrange multiplier set is nonempty and bounded
(MFCQ holds).

• The quadratic growth condition is satisfied.

• The data of the problem are twice differentiable.

• Linear Convergence of NLP formulation of MPCC is
guaranteed for Steepest Descent (MA05).

• Quadratic Convergence is achievable under certain
assumptions (MA05).
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Elastic Mode

Effect of the Modification

• Lagrange Multiplier set of the original problem: M(x∗).

• Lagrange Multiplier set of the modified problem:
Mc(x∗, 0). µc ∈Mc(x∗, 0) ⇒ ‖µc‖ = c .

• Reduced Lagrange Multiplier set.

Mc
r (x

∗) = {µ ∈ Rm | ∃µm+1 ∈ R,

such that (µ, µm+1) ∈Mc((x∗, 0))} .

• Mc
r (x

∗) ⊂M(x∗). The penalty term cζ has the effect of
preserving only the multipliers µ ∈M(x∗) with ‖µ‖1 ≤ c !

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Numerical Experiments with SNOPT

The elastic mode of SNOPT implements a similar approach. Runs
done on NEOS for the MacMPCC collection.

Problem Var-Con-CC Value Status Feval Elastic

gnash14 21-13-1 -0.17904 Optimal 27 Yes

gnash15 21-13-1 -354.699 Optimal 12 None

gnash16 21-13-1 -241.441 Optimal 7 None

gnash17 21-13-1 -90.7491 Optimal 9 None

gne 16-17-10 0 Optimal 10 Yes

pack-rig1-8 89-76-1 0.721818 Optimal 15 None

pack-rig1-16 401-326-1 0.742102 Optimal 21 None

pack-rig1-32 1697-1354-1 0.751564 Optimal 19 None

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Results Obtained with MINOS

Runs done with NEOS for the MacMPCC collection.

Problem Var-Con-CC Value Status Feval Infeas

gnash14 21-13-1 -0.17904 Optimal 80 0.0

gnash15 21-13-1 -354.699 Infeasible 236 7.1E0

gnash16 21-13-1 -241.441 Infeasible 272 1.0E1

gnash17 21-13-1 -90.7491 Infeasible 439 5.3E0

gne 16-17-10 0 Infeasible 259 2.6E1

pack-rig1-8 89-76-1 0.721818 Optimal 220 0.0E0

pack-rig1-16 401-326-1 0.742102 Optimal 1460 0.0E0

pack-rig1-32 1697-1354-1 N/A Interrupted N/A N/A
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Elastic Mode

What is NLP global convergence?

It is global convergence to a local stationary point. That is, the
algorithm does not get lost at points that have no relevance to the
original problem. It means that the algorithm either.

1 Terminates at an infeasible point (which is a minimizer of
some norm of the constraint infeasibility). .

2 It terminates at a feasible point that does not satisfy a
constraint qualification.

3 Terminates at a stationary point.

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Elastic Formulation: Global Convergence

Elastic(c) : minx ,ζ f (x) + cζ + c(GT x)T (HT x) subject to
g(x) ≥ −ζep, ζeq ≥ h(x) ≥ −ζeq, 0 ≤ ζ ≤ ζ̄,
GT x ≥ 0, HT x ≥ 0,

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Sequence of Inexact First-Order Points

Given a sequence of inexact first-order points for Elastic(ck), any
accumulation point satisfying feasibility and CQ for the MPCC is
C-stationary. Formally:

Theorem

{ck} positive, nondecreasing; {εk} is nonnegative with
{ckεk} → 0; (xk , ζk) is an εk -first-order point of Elastic (ck). If x∗

is an accumulation point of {xk} that is feasible for MPCC and
satisfies MPCC-LICQ, then x∗ is C-stationary and ζk → 0 for the
convergent subsequence.

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Sequence of Exact Second-Order Points – answer to Q4

{ck} ↑ ∞ and let each (xk , ζk) be a second-order point for
Elastic(ck).

Theorem

Either there is finite termination at some ck (with xk feasible for
MPCC), or else any accumulation point of {xk} is infeasible for
MPCC or else fails to satisfy MPCC-LICQ.

Proof: First show ζk = 0 for k sufficiently large. Then if
(GT

j x∗)(HT
j x∗) > 0 for some j and accumulation point x∗, can

identify a direction of arbitrarily negative curvature over the
subsequence of k’s. (Contradicts second-order assumption.) Key:
Finite exact complementarity ⇒ ck is fixed for k ≥ k0

Other convergence properties are corollaries of the inexact case.
Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Sequence of Inexact Second-Order Points – answer Q4

(xk , ζk) is an (εk , δk)-second-order point of Elastic(ck).

Theorem

Let {ck} nondecreasing, {εk} has {ckεk} → 0, and {δk} → 0.
Assume that acc point x∗ is feasible for MPCC, satisfies
MPCC-LICQ. Then have c∗ such that if ck ≥ c∗, k large, we have

(a) x∗ is M-stationary for MPCC.

(b) {ck} bounded ⇒ x∗ strongly stationary for MPCC.

(c) τk ⊥ GT xk and νk ⊥ HT xk ⇒ finite exact
complementarity (GT xk)T (HT xk) = 0 (for k with xk near
x∗ and ck ≥ c∗).

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Finite Exact Complementarity: Another Condition

Definition

The strengthened MPCC-LICQ (MPCC-SLICQ) holds at a feasible
point x∗ of MPCC if the vectors in each of the following sets are
linearly independent:

K ∪ {Hj}, for j ∈ IG\IH , K ∪ {Gj}, for j ∈ IH\IG ,

where K is the usual set of active constraint gradients for MPCC.

Under similar conditions to the previous theorem, with
MPCC-SLICQ replacing τk ⊥ GT xk and νk ⊥ HT xk , get finite
exact complementarity.

Mihai Anitescu Argonne National Laboratory
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Elastic Mode

Algorithm Elastic-Inexact
Choose c0 > 0, ε0 > 0, Mε > Mc > 1, and positive sequences
{δk} → 0, {ωk} → 0;
for k = 0, 1, 2, . . .
find an (εk , δk)-second-order point (xk , ζk) of PF(ck) with
Lagrange multipliers (λk , µ−k , µ+k , τ k , νk , π−k , π+k);
if ζk + (GT xk)T (HT xk) ≥ ωk ,
set ck+1 = Mcck ;
else
set ck+1 = ck ;
end (if)
choose εk+1 ∈ (0, εk/Mε].
end (for)
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Elastic Mode

Implementation issues

The elastic mode can be wrapped around any solver with good
results (KNITRO)!
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Numerical Results for MPCC

Problem
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Numerical Results for MPCC

Run parameters

• Incident set identification (is)

• Packaging problem with pliant obstacle (pc)

• Packaging problem with rigid obstacle (pr).

Implement Elastic-Inexact using filterSQP (Fletcher/Leyffer) as the
NLP solver, 6 examples per configuration (3 meshes times 2 types
of obstacles). Parameters c0 = 10, ε0 = 10−3, Mε = 15, Mc = 10,

ωk = min{(k + 1)−1, c
−1/2
k }.
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Numerical Results for MPCC

Aim: Observe various features of the analysis: finite exact
complementarity, second-order points for Elastic(ck) at at the
limiting MPCC, constraint qualifications.

Means: Used AMPL scripts for implementation, dumped the
derivative information on disk using “option auxfiles rc” and
loaded it in Matlab using routines developped by Todd Munson.

Thanks to Sven Leyffer, Todd Munson.
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Numerical Results for MPCC

Exact complementarity is satisfied at final point for all problems.
3/16 abnormal terminations:

Problem Termination Message ck Infeas
is-1-8 Optimal 10
is-1-16 Optimal 10
is-1-32 Small Trust Region 10 2.25e–07
is-2-8 Optimal 10
is-2-16 Optimal 10

is-2-32 Optimal 103

pc-1-8 Optimal 10

pc-1-16 Optimal 102

pc-1-32 Optimal 103

pc-2-8 Optimal 102

pc-2-16 Optimal 105

pc-2-32 Local Inf 104 6.06e–12

pr-1-8 Optimal 102

pr-1-16 Optimal 103

pr-1-32 Optimal 106

pr-2-8 Optimal 102

pr-2-16 Optimal 105

pr-2-32 Local Inf 106 5.68e–13

Validates our early satisfaction of exact complementarity .
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Numerical Results for MPCC

Constraint Qualifications and Second-Order Conditions
Define “numerically active” constraints using a tolerance of
δ = 10−6.

Define Jact to be the matrix of numerically active constraint
gradients.

For Q2 spanning the null space of Jact, we measure satisfaction of
MPCC-SLICQ via

χspan
∆
= min

(
min
i /∈IG

‖QT
2 Gi‖2, min

i /∈IH
‖QT

2 Hi‖2

)
,

Satisfaction of second-order conditions measured by examining
eigenvalues of QT

2 LQ2, where L is Hessian Lagrangian at the last
NLP.
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Numerical Results for MPCC

Problem nF mact cond2(Jact) χspan λmin
“
QT

2 HQ2

”
is-1-8 193 181 3.45e+03 1.95e–03 0
is-1-16 763 742 4.39e+04 6.84e–04 0
is-1-32 3042 3020 5.26e+05 3.90e–09 0
is-2-8 184 180 2.17e+03 5.66e–04 1.08e–04
is-2-16 750 745 6.46e+04 8.44e–05 4.10e–07
is-2-32 3032 3025 ∞ 0 -1.48
pc-1-8 228 228 1.96e+02 0 ∞
pc-1-16 970 964 9.38e+03 1.91e–06 5.55e–02
pc-1-32 3997 3972 4.48e+04 1.22e–08 4.88e–01
pc-2-8 233 228 3.40e+03 1.27e–04 1.37e+00
pc-2-16 977 964 1.34e+04 4.34e–06 6.62e–01
pc-2-32 4001 3972 7.82e+04 7.61e–09 2.06e–01
pr-1-8 186 179 1.10e+03 2.96e–17 2.61e–07
pr-1-16 754 739 4.11e+03 1.35e–18 0
pr-1-32 3040 3011 8.99e+07 3.56e–19 4.34e–01
pr-2-8 185 179 3.22e+03 1.47e–18 4.88e–01
pr-2-16 743 739 3.07e+03 1.91e–23 2.12e–01
pr-2-32 3027 3011 7.62e+03 8.92e–24 1.79e–01

MPCC-LICQ is 15/16, approx second-order point 16/16,
MPCC-SLICQ 10/16.
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Conclusions

Conclusions

• The elastic mode algorithms is a robust way of easily adapting
your favorite solver to solve MPCC.

• We have theory for it in the case of MPCC, concerning local,
global and rate of convergence results ( MA05, MA06, MA,
Tseng and Wright, in press).

• It has been adopted in several industrial strength codes
IPOPT-C, LOQO, KNITRO in one variant or another (beyond
SNOPT, that already had it).
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Conclusions

Outstanding issues

• Can we show global convergence for inexact solves with fewer
assumptions?

• Can we extend the global convergence results for interior point
algorithms, or can we say something about the quality of the
second-order points produced by interior point algorithms?

• Can we create a preconditioned conjugate gradient variant for
very large scale optimization?

• Can we efficiently account for uncertainty?
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Conclusions

Emerging application areas

MPCC relevance is due to the fact that there is a lower level
optimization problem due to a game theoretical model.

• Energy distribution.

• Homeland Security and Nonproliferation applications with
same.

• Massive adaptive data classification.

• Network design and bandwitdth allocation in high
performance data and transportation networks.

• Taxation policy.

• Toll pricing in transportation networks.
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Conclusions

Stochastic Mathematical Programs with Complementarity
Constraints

SMPCC is a problem of the following form

minx ,(y)(ω)ω∈Ω
Eω [f (x , y(ω), ω)]

subject to c1(x , y(ω), ω) ≤ 0;ω ∈ Ω
c2(x , y(ω), ω) = 0;ω ∈ Ω

0 ≤ y1(ω) ⊥ F (x , y(ω), ω) ≥ 0;ω ∈ Ω,

(1)

where Ω are the events of the probability space (Ω,F ,P); f , c1,
c2, and F are smooth vector-valued functions; and y1 is a
subvector of components of y .
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